A productivity collapse to end Earth’s Great Oxidation
Malcolm S. W. Hodgskiss,a,b,1,2 Peter W. Crockfordb,c,1,2, Yongbo Pengd, Boswell A. Winge, and Tristan J. Hornerf,g

aDepartment of Geological Sciences, Stanford University, Stanford, CA 94305; bDepartment of Earth and Planetary Sciences, Weizmann Institute of Science, 761000 Rehovot, Israel; cDepartment of Geoscience, Princeton University, Princeton, NJ 08544; dSchool of Earth Sciences and Engineering, Nanjing University, 210023 Nanjing, China; eDepartment of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309; Non-traditional Isotope Research on Various Advanced Novel Applications (NIRVANA) Labs, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and fDepartment of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved July 8, 2019 (received for review January 21, 2019)

It has been hypothesized that the overall size of—or efficiency of carbon export from—the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ~−0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of >80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth’s GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.

Proterozoic | primary productivity | Great Oxidation Event | triple-oxygen isotopes | nutrient limitation

The rise of oxygen in Earth’s atmosphere during the early Paleoproterozoic was one of the most transformative events in all of Earth’s history. Evidence for this event can be observed through the disappearance of mass-independently fractionated sulfur isotopes (1) within reduced and oxidized forms of sulfur ca. 2,430 to 2,330 Ma (2) as well as macroscale features in the sedimentary record such as the emergence of red beds or the disappearance of detrital pyrite and uraninite (3). Following the initial rise in atmospheric oxygen is the largest positive shift in the carbonate carbon isotope record [−2,220 to 2,060 Ma (4, 5)] termed the Lomagundi–Jatuli Excursion (LJE). The interval between the initial rise of O2 ca. 2,430 to 2,330 Ma and the end of the LJE—marked by carbon isotope values returning to values of ~0‰—has traditionally defined Earth’s Great Oxidation Event (6) and we follow this convention here.

The LJE has widely been interpreted as a transient rise in organic carbon burial and by consequence a rise in atmospheric O2. Importantly, this rise in O2 has been suggested to exceed not only Archean, but also background Proterozoic (6, 7) and possibly Phanerozoic levels in a so-called “oxygen overshoot” (8, 9). However, this high-O2 interpretation can be tempered under different assumptions regarding changes in the isotopic value of carbon inputs to the global dissolved inorganic carbon (DIC) reservoir as well as the fractionation associated with carbon fixation by primary producers (10). Moreover, some researchers question whether these ca. 2,220– to 2,060-Ma carbonates actually record changes to global marine DIC and instead have suggested that such isotopic records may document local and/or diagenetic processes (e.g., ref. 11). This controversy surrounding the LJE has motivated independent tests of whether such an oxygen overshoot, and corresponding transition from a high-pO2 syn-Great Oxidation Event (GOE) state to a comparatively low-pO2 post-GOE state, even occurred. Numerous independent proxies, while differing in degree of severity, broadly characterize this interval as a decline in surface environment oxidant inventories (12–18). However, it is worth noting that many such records may better reflect local depositional environments and not necessarily global conditions. Moreover, almost all of these records reflect the passive response of a geochemical proxy to a change in Earth’s oxidant reservoir (i.e., the effect), rather than capturing the atmospheric signal of interest or, perhaps more importantly, the underlying cause. Cumulatively, it is clear that the application of an independent test of such models will prove useful in shedding light on the end-GOE transition.

A critical factor in evaluating the GOE and the end-GOE transition is an understanding of the mechanism driving oxygenation. A rise in atmospheric oxygen during the GOE could have been the result of increased organic carbon production (i.e., increased gross primary production [GPP] and by consequence a larger biosphere). To sustain a larger biosphere during both the buildup to and maintenance of a high-pO2 state during the GOE, it has been proposed that high weathering rates (perhaps including siderite; ref. 9) and consequent phosphorus release would have resulted from elevated H2SO4 generation via pyrite oxidation during the GOE (although this remains debated; ref. 12). This large release of phosphorus would have then sustained the posited oxygen overshoot in a feast-like scenario (6, 8). In marked contrast to the elevated GPP hypothesized for the GOE, evidence has been presented that characterizes the mid-Proterozoic [−2,000 to 1,100 Ma (14)] as an interval of remarkably low GPP, possibly just 6% of modern levels (14, 19). Although GPP changes across this transition have been assumed (16), quantifying the degree to which the GOE deviated from the mid-Proterozoic GPP state remains largely unexplored, and how quickly such a transition in the biosphere occurred to mark the end of the GOE remains unknown. To better understand the end-GOE transition and test the hypothesis that the end-GOE was brought about by a nutrient famine, we

Significance

The Great Oxidation Event (GOE) ca. 2,400 to 2,050 Ma caused the first significant accumulation of free oxygen in the atmosphere and potentially a dramatic growth of oxidant reservoirs on the Earth’s surface in a suggested “oxygen overshoot.” However, the termination of this event remains poorly understood. Here, we present geochemical data suggesting a drastic decline in gross primary productivity across the end-GOE transition, delineating a shift from “feast” to “famine” conditions characteristic of the next 1 billion y.

Author contributions: M.S.W.H. and P.W.C. designed research; M.S.W.H., P.W.C., Y.P., and T.J.H. analyzed data; and M.S.W.H., P.W.C., Y.P., B.A.W., and T.J.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

1M.S.W.H. and P.W.C. contributed equally to this work.
2To whom correspondence may be addressed. Email: mswh@stanford.edu or peter.crockford@weizmann.ac.il.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900325116/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1900325116
PNAS Latest Articles | 1 of 6
employ a combined isotope approach utilizing triple-oxygen (Δ^{17}O), multiple-sulfur (δ^{34}S, δ^{32}S, δ^{33}S), and Ba isotopes (δ^{113}Ba) on barites collected from the Belcher Group, Nunavut, Canada. These samples capture the interval of time immediately after the GOE (Orosirian; ref. 20) and allow quantitative constraints to be placed on the productivity (GPP) of the biosphere at this time.

Geological Context. The Belcher Group is a 7- to 10-km thick sedimentary basin in subarctic Canada, largely deposited between 2,018.5 ± 1.0 Ma and 1,854.2 ± 1.85 Ma (Fig. 1 and ref. 20). The lowermost Belcher Group is composed of ~1 km of dolomiticite deposited in a sabkha environment (Kasegalik Formation). This is followed by several hundred meters of Eskimo Formation basalts. Overlying this are 3 km of generally supratidal to shallow subtidal carbonate sedimentary rocks with minor siliciclastic rocks (Fairweather, McLeary, Tukarak, Mavor, Costello, and Laddie formations). Progradation is recorded in the Rowatt and Mukpollo formations, followed by the deposition of granular iron formation in the Kipalu Formation. The overlying Flaherty Formation is composed of submarine basalt and is up to several kilometers thick. The Belcher Group concludes with the deposition of a flysch (Omarolluk Formation) and molasse [Loaf Formation (20–22)].

Evaporite casts and pseudomorphs of SO$_2$-bearing minerals have been reported in a number of stratigraphic intervals in the Belcher Group and have been further constrained during our fieldwork (Fig. 1 and refs. 22 and 23). In the Kasegalik Formation, chert-replaced gypsum rosettes and crystals are common in dolomictics, with halite casts occurring more rarely in maroon, argillaceous dolomictics. Standard heavy mineral separation techniques on 5- to 10-cm thick beds of sandstone from the Kasegalik Formation yielded a small fraction of microbarites (~200 µm in width). No halite was observed in the McLeary Formation but it did bear small chert-replaced, twinned gypsum crystals along a single stratigraphic horizon <2 m thick. Finally, large (~1–4 cm) barite crystals are present in the Costello Formation (22) and are the primary focus of this study. This formation is composed of some 10 to 20 m of gray to black shale, overlain by several hundred meters of rhythmically bedded, variably red, pink, gray, and cream-colored dolomictic with shale partings and very thinly interbedded limestone. In a small area on eastern Tukarak Island, milky-white barite crystals up to several centimeters in width occur in massive, cream-colored dolomictic (Fig. 1). There is no evidence for subaerial exposure or the presence of a strongly evaporitic/restricted environment associated with the Costello Formation barites; to the contrary, slumps and partial Bouma sequences have led to the interpretation that the Costello Formation was deposited in a foreslope environment (21).

Mass-Independent Oxygen-Isotope Variations. The Δ^{17}O anomaly recorded within sedimentary SO$_2$ reflects both the amount of tropospheric O$_2$ incorporated into SO$_2$ during pyrite oxidation [ΔfSO$_2$; ~8% to 15% (24)] and the Δ^{17}O value of ambient tropospheric O$_2$, which itself is driven by 3 principle variables: pCO$_2$, pO$_2$, and GPP (SI Appendix, Fig. S2). Photochemical reactions in

Fig. 1. Location of the Belcher Islands, sampling site, and sulfate/evaporite occurrences. (A) Stratigraphic column of the Belcher Group, indicating the intervals at which gypsum pseudomorphs (gypsum pseudo.), halite casts, microbarite, and macrobarite were observed. Refer to SI Appendix, Fig. S1 for photographs of each type of occurrence. The Kasegalik Formation, deposited in a sabkha environment, was host to the largest amount of evaporite casts and SO$_2$ minerals observed in the Belcher Group. Higher in the stratigraphy, the McLeary Formation contains 1 stratigraphic horizon with a small amount of gypsum pseudomorphs. Finally, the Costello Formation contains centimeter-scale barite crystals along a single stratigraphic horizon on eastern Tukarak Island. (B) Map of North America with Belcher Islands in the black box. (C) Map of Belcher Islands. Macrobarites are indicated by a red circle. (D) Macrobarites, with Canadian penny for scale.
the stratosphere involving the production of O₃ (ozone) do so with a mass-independent partitioning of isotopes, where O₃ becomes enriched in ¹⁷O and O₂ depleted in ¹⁷O relative to a suggested definition of mass dependence [δ¹⁷O/δ¹⁸O = 0.5305 (25, 26)]. Depletions and enrichments in ¹³C relative to this definition of mass-dependent fractionation are termed “triple-oxygen isotope anomalies,” which are defined as δ¹³C = ¹³C/¹²C – 1, and are reported on the permil (%e) scale relative to Vienna Standard Mean Ocean Water (V-SMOW). The ¹³C depletion in O₂ (negative δ¹³C values) can be made larger via isotopic exchange between O₂ and CO₂ (27) where larger depletions are observed at higher pCO₂ levels. Mass-independently depleted O₂ produced in the stratosphere is then transported to the troposphere where it is mixed with photosynthetically derived O₂ from the biosphere that carries a mass-dependently fractionated δ¹³C value (i.e., δ¹³C of ∼0.05‰; ref. 28 and SI Appendix, Fig. S2). Therefore, the degree of depletion from stratospheric reactions with CO₂, the rate of nonmass independent O₂ production from the biosphere, and the size of the O₂ reservoir where these fluxes compete set the δ¹³C value of tropospheric O₂ (29).

Provided that limited amounts of microbial cycling occur, tropospheric δ¹³C values can be deposited and preserved in the sedimentary record in the form of SO₄²⁻-bearing minerals (e.g., gypsum, barite, CAS). All postatmospheric processes regarding the carried δ¹³C values within SO₄²⁻-bearing minerals that are more negative than modern tropospheric O₂ (δ¹³C = −0.516‰; ref. 30) must have been deposited under different pCO₂-pO₂-GPP conditions than those of the modern environment (14, 19, 29, 31, 32).

Sulfur-Isotope Variations. The sulfur isotopic composition (δ³⁴S, δ³³S) of SO₄²⁻-bearing minerals reflects several factors: The isotopic composition of sulfur inputs into the depositional system, which, on long- and short-term timescales is dominated by volcanically and sedimentary-derived sulfur, respectively; the type and intensity of microbial cycling that processes S in SO₄²⁻ into δ³³S eventually to pyrite through reactions with Fe in sediments; and any isotopic effects associated with precipitation itself (14, 33). Oxidative weathering of volcanically derived sulfur produces SO₄²⁻ with a δ³³S value (δ³³S = [³³S/³⁴S]sample – 1) / [³³S/³⁴S]standard] of −0.05‰ and a δ³⁴S value (δ³⁴S = ³⁴S/³³S – 1) / [³⁴S/³³S]standard] of −0.05‰ (13) reported here relative to Vienna Cañón Diablo Troilite (V-CDT) scale. Fractionation by dissipatory SO₄²⁻ reduction or microbial sulfide oxidation (34), which likely dominated microbial S cycling across the Paleoproterozoic (35), results in sulfide species with lower δ³⁴S values and thus leaves residual SO₄²⁻ isotopically enriched in ³³S (e.g., ref. 36). Minor sulfur isotopes are also sensitive to microbial cycling that will slightly increase or decrease δ³³S values in residual SO₄²⁻ depending upon the dominant S metabolism (35–37). Such processes give the modern marine SO₄²⁻ reservoir a δ³³S value of +21.2‰ and a δ³⁴S value of +0.05‰ (33). Therefore, multiple sulfur isotopes can aid in exploring the nature of ancient SO₄²⁻ deposits (e.g., marine or terrestrial) as well as provide insights into the degree of microbial-S cycling.

Barium-Isotope Variations. Barium stable isotopes, δ¹³⁸/¹³⁴Ba, can be used to trace the source and cycling of Ba to modern and ancient barite deposits (e.g., refs. 38 and 39; δ¹³⁸/¹³⁴Ba = ¹³⁸Ba/¹³⁴Basample / ¹³⁸Ba/¹³⁴BaNIST 3104a – 1). Broadly speaking, barite formation involves the meeting of 2 segregated fluids at an interface (e.g., ref. 40) or in barite supersaturated microzones within otherwise undersaturated environments (e.g., ref. 41). Barite precipitation favors incorporation of isotopically light Ba with an isotopic effect of −0.5‰ (e.g., ref. 41), rendering residual dissolved Ba enriched in “heavy” Ba isotopes by a corresponding amount. Thus, the isotopic composition of Ba in barites is sensitive to the size of the Ba reservoir. Barites produced from semi-infinite “open” reservoirs, such as seawater, exhibit a narrow range of compositions close to the crustal average composition (−0.0‰ ± 0.1‰). In contrast, precipitates formed from finite or “closed” reservoirs, such as cold seeps or hot springs, can exhibit distinctive compositions (38). Such precipitates can exhibit δ¹³⁸/¹³⁴Ba values with a non-zero mean and considerable isotopic variation, which is thought to arise from differences in the isotopic composition of the underlying local Ba source and its restricted evolution under semirestricted settings, respectively. Thus, the mean and range of Ba isotope compositions of precipitated barite are broadly indicative of the source of Ba.

Materials and Methods

Nine “baromite” samples were collected from the Costello Formation for geochemical analyses. For δ¹³C measurements, samples were dissolved and purified to produce pure barite, which was subsequently lazed and measured by isotope ratio mass spectrometry (IR-MS). For δ³³S and δ³⁴S measurements, S was extracted and purified using Thode solution and then fluorinated and measured by IR-MS. Finally, δ¹³⁸/¹³⁴Ba measurements were carried out by sample alkaline dissolution, barium purification using column chromatography, and subsequent analysis by multicollector inductively coupled plasma mass spectrometry. Refer to SI Appendix for detailed methods.

Results

Triple-oxygen- and Ba-isotope data for microbarites from the Kasegalik Formation and macrobarites from the Costello Formation are summarized in SI Appendix, Table S1. Costello Formation macrobarite δ¹³C values are closely clustered, with all analyses falling between −0.78‰ and −0.55‰, well below that of modern marine SO₄ (−0.09‰ (31)) and modern tropospheric O₂ (−0.516‰; ref. 30 and Fig. 2). δ³³S values in these samples cover a range that includes modern marine SO₄ (33) and overlap with previously published δ³³S CAS values from the Kasegalik Formation (Fig. 3 and ref. 42). Unlike δ³⁴S values, δ³³S data significantly deviate from values for modern marine SO₄ (δ³³S = +0.05‰ (33)) with predominantly negative values between −0.11‰ and −0.06‰ (Fig. 3). Finally, Costello Formation macrobarite δ³⁸/³⁴Ba data tightly cluster between +0.08‰ and +0.12‰, similar to values for modern and post-Marinoan marine barites (ref. 38 and Fig. 3B), but contrast with modern terrestrial, cold seep, or hydrothermal values (−0.49‰ to +0.52‰, −0.61‰ to +0.36‰, and −0.08‰ to −0.04‰, respectively; ref. 38).

Discussion

Genesis of Costello Formation Barites. The Costello Formation is the dominant host of barites (Ba and SO₄) in the Belcher Group and we explore hypotheses for their genetic origin here. There is no stratigraphic, sedimentologic, mineralogic, or petrographic evidence for subaerial exposure in the Costello Formation (20–22), and thus it is unlikely that the macrobarites formed via direct precipitation of Ba- and SO₄-bearing salts in a strongly evaporitic environment. Rather, their large size, well-developed crystal habit, and lack of preferred orientation with respect to bedding strongly suggest that these barites formed postdepositionally rather than in the water column or at the sediment–water interface with coeval carbonates (Fig. 1). Since barite is an insoluble material (ksp BaSO₄ ~ 10), significant Ba accumulation typically requires the mixing of 2 separate fluids, one rich in Ba and the other in SO₄ (38, 40). The Ba- and S-isotope composition of barites thus constrains their respective source fluids and enables deduction of the significance of the δ¹³C variations preserved therein. We consider 5 possible sources of SO₄ to Costello Formation macrobarites. In stratigraphic order these are 1) remobilized SO₄ from the evaporitic and SO₄ pseudomorph-bearing horizons of the Kasegalik Formation, 2) remobilized SO₄ from the microbarite-bearing horizons of the Kasegalik Formation, 3) remobilized SO₄ from the formerly gypsum-bearing horizons of the McLear Formation, 4) the ambient seawater SO₄ reservoir during the time of Costello Formation deposition, and 5) the downward movement of SO₄ from sediments overlying the Costello Formation. Two of these options (scenarios 2 and 3) can be ruled out on mass-balance grounds. The small stratigraphic expression of the microbarites in
1.8 Ma on 3Ma a set stratigraphically reservoir was 1.0 Ma and 2,015.4 to the overlying Costello Formation. The similarity and abnormally high ± (scenario 4) that was to the barite-forming environment that carried negative and ref. 42) and those of the macrobarites of the δS. Geochemical and GPP model results. (Data measured and scenarios during the GOE and low sequence, Ba. A seawater source of SO4 is also highly unlikely because there are no known occurrences of have only a very small amount of chert-replaced gypsum. Scenario 4, Kasegalik Formation (ca. 1,945 Ma) was observed to them a poor candidate source of SO4 because there are no known occurrences of δ34S values of CAS measurements from the Kasegalik Formation (Fig. 3) and those of the macrobarites of the

the Kasegalik Formation and their low abundance (~1 ppm) make them a poor candidate source of SO4 to the Costello Formation. Similarly, the McLeary Formation (ca. 1.945 Ma) was observed to have only a very small amount of chert-replaced gypsum. Scenario Kasegalik Formation, places age constraints between 2,018.5 ± 1.0 Ma and 2,015.4 ± 1.8 Ma on δ17O signatures. The Kasegalik Formation contains abundant chert-replaced gypsum pseudomorphs interspersed through some 25% of the stratigraphy and therefore, on the grounds of its sheer mass of SO4-bearing minerals as well as its evaporitic setting, seems a likely source of SO4 to the overlying Costello Formation. The similarity of δ34S values of CAS measurements from the Kasegalik Formation (Fig. 3) and those of the macrobarites of the

While this scenario is difficult to disprove sedimentologically, it would require abnormally low rates of microbial sulfur cycling to prevent the removal of δ34S-anomalous SO4 and abnormally high rates of continental SO4 inputs to maintain a continuous supply of SO4 that carried negative δ17O anomalies; such a state has been inferred only for the exceptional oceanographic case of a meltwater lens following deglaciation of the Marinoan Snowball Earth (44). The alternative “remobilization” scenario 1, in which the SO4 in Costello Formation macrobarites was derived from Kasegalik Formation SO4-bearing minerals, places age constraints between 2,018.5 ± 1.0 Ma and 2,015.4 ± 1.8 Ma on δ17O signatures. The Costello Formation contains abundant chert-replaced gypsum pseudomorphs interspersed through some 25% of the stratigraphy (Fig. 1) and therefore, on the grounds of its sheer mass of SO4-bearing minerals as well as its evaporitic setting, seems a likely source of SO4 to the overlying Costello Formation. The similarity of δ34S values of CAS measurements from the Kasegalik Formation (Fig. 3) and those of the macrobarites of the
Costello Formation cannot distinguish between these 2 possibilities, and additional evidence is required to discriminate between these sources of SO₄ for the Costello Formation macrobarites.

As noted previously (e.g., ref. 38), barites precipitated from large Ba reservoirs, such as seawater, generally exhibit a narrow Ba-isotope range close to the crustal average, whereas barites formed in more restricted closed-system settings show wide compositional ranges due to variable influences of inputs, diffusive transport, and precipitation–dissolution events (38). The narrow variance that was measured for δ18O/δ13C-Ba values for Costello Formation barites (+0.10‰ ≤ +0.02‰; ±SD, n = 7) is indicative of a large Ba reservoir (e.g., ref. 39). We contend that this reservoir was contemporaneous seawater, since the mean δ18O/δ13C-Ba value of Costello Formation macrobarites closely matches those of ancient and modern marine precipitates (41). Due to the insoluble nature of barite, a contemporaneous seawater source of Ba implies a nonseawater source of SO₄ to the Costello Formation macrobarites. In turn, this constraint indicates that Costello Formation macrobarites record Δ17O anomalies inherited from SO₄ that were tens of millions of years older than the barites themselves (10), which is possible if SO₄-bearing fluids were stored in basinal or crustal brines (40, 45). That is, the remobilized SO₄ originated from the Kasegalik Formation (ca. 2,018.5 ± 0.5 Ma to 2,015.4 ± 1.6 Ma), whereas the Ba source—and thus barite precipitation—possesses a younger age of ca. 1,950 Ma (>1,870 Ma, based on cross-cutting dykes and sills).

A Productivity Crash to End the GOE? Δ17O values in the Costello Formation macrobarites (with sulfate that formed ca. 2,018.5 to 2,015.4 Ma) are similar to those deposited in the ca. 1,700-Ma Myrtle Shale Formation (14) and ca. 1,400-Ma Sibley Group (19), suggesting that the transition out of the GOE makes the onset of conditions that may have persisted across the >600-My interval separating these deposits (Fig. 2 and refs. 4, 14, 19, and 20). We set temporal constraints on Δ17O isotope transition 2 by comparing Costello Formation macrobarite results to the suggested youngest syn-GOE Δ17O values from the Tulomzero Formation in Russian Karelia (14, 46). The observation of highly positive δ13C values (up to +13.9‰) indicates that Tulomzero Formation sulfate was deposited during the LIE, placing an age of at least 2,108 to 2,057 Ma on these sediments and suggesting the shift in Δ17O values across the end-GOE occurred over ~39 to 90 My. This illustrates the relative rapidity of the step change seen in the Δ17O record across the end-GOE.

The differences in Δ17O values between syn- and post-GOE samples could indicate a step change in the fraction of atmospheric O₂ preserved within SO₄ deposits (fO₂), a step change in the pO₂/pCO₂-GPP conditions that produced the atmospheric Δ17O anomaly, or some combination of these 2 factors. If the change were only due to fO₂, the shift in Δ17O values across the end-GOE transition would require a >4-fold increase in fO₂ after the GOE (from >0.02 to <0.15; SI Appendix, Fig. S3). However, if pO₂ was lower after the GOE interval (7), one would not expect more O₂ incorporation into SO₄ accompanying sulfide oxidation, thus placing the full burden on enhanced S cycling during the GOE to explain the Δ17O shift. Both syn- and post-GOE samples exhibit a similar range of δS values (~25‰; Fig. 3A) despite clear interformation variability. This is consistent with a similar degree of S cycling during both intervals and, by inference, no diminution of the syn-GOE Δ17O signal by enhanced O exchange with water (14, 46). Although the distinctly more positive δS values in syn-GOE samples could be interpreted to reflect greater S reoxidation at this time (35, 37), another explanation is that the lack of any covariation with δS (cf. refs. 13 and 47) suggests that such signatures might instead reflect an isotopic shift associated with the oxidative weathering of “old” crustal sulfides (48).

In light of these considerations, we explore the Δ17O transition out of the GOE with respect to changing pO₂/pCO₂-GPP conditions. The spatial and isotopic consistency of the Δ17O results for the GOE (8 formations; 81 measurements; mean Δ17O = −0.18‰ ± 0.14‰; 2σ; refs. 14 and 46), as well as for the mid-Proterozoic (3 formations; 86 measurements; mean Δ17O = −0.68‰ ± 0.25‰; 2σ; refs. 14 and 19), is indicative of a step change in a global process as driving the transition. As a result, we use the Monte Carlo approach of ref. 19, along with independent estimates of pO₂, pCO₂, fO₂ (24), and other atmospheric parameters (ref. 19 and SI Appendix, Table S2), to interpret the Δ17O record primarily as a monitor of a state shift in GPP. We note that the interpretations presented here are conservative, as S recycling and reoxidation—if they were greater than assumed here—would drive Δ17O values toward 0 and thus GPP estimates toward higher values.

Across a range of reported pO₂ and pCO₂ conditions for the syn- and post-GOE intervals (SI Appendix, Table S3), our calculations show that a dramatic change in microbial S cycling at the end of the GOE would require a drop in GPP of nearly 200-fold, from a median value of over 1,100% to a median value of ~5% of modern (Fig. 2). This shift reflects the need to dilute a greater standing stock of trophogenic O₂ during the GOE. However, it is unclear whether syn-GOE biogeochemical cycles could support an oxygende dependent estimate of the productivity of the biosphere across all of Earth’s history. Moreover, our results strengthen the inextricable link between
the ultimate source of oxygen production (the marine biosphere) and the oxidation of the Earth’s surface environment. We find a drop in GPP >5-fold, but possibly as much as 2 orders of magnitude across the end-GOE transition using a Monte Carlo approach based on published estimates of pO_2 and pCO_2. This drop was likely brought about by a large decrease in nutrients supplied to the biosphere that, in turn, marked the conclusion of the GOE and ushered in the subsequent 1-billion-year interval characterized by markedly low and stable GPP compared with the modern Earth. Although the end-GOE is not considered a major biotic event, our results show that the decrease in gross primary productivity across this transition eclipses even the largest extinction events in all of Earth’s history.